Concern-oriented language development (COLD): Fostering reuse in language engineering

Citation data:

Computer Languages, Systems & Structures, ISSN: 1477-8424, Vol: 54, Page: 139-155

Publication Year:
2018
Captures 4
Readers 4
Social Media 23
Tweets 23
Citations 1
Citation Indexes 1
DOI:
10.1016/j.cl.2018.05.004
Author(s):
Benoit Combemale; Jörg Kienzle; Gunter Mussbacher; Olivier Barais; Erwan Bousse; Walter Cazzola; Philippe Collet; Thomas Degueule; Robert Heinrich; Jean-Marc Jézéquel; Manuel Leduc; Tanja Mayerhofer; Sébastien Mosser; Matthias Schöttle; Misha Strittmatter; Andreas Wortmann Show More Hide
Publisher(s):
Elsevier BV
Tags:
Computer Science
Most Recent Tweet View All Tweets
article description
Domain-Specific Languages (DSLs) bridge the gap between the problem space, in which stakeholders work, and the solution space, i.e., the concrete artifacts defining the target system. They are usually small and intuitive languages whose concepts and expressiveness fit a particular domain. DSLs recently found their application in an increasingly broad range of domains, e.g., cyber-physical systems, computational sciences and high performance computing. Despite recent advances, the development of DSLs is error-prone and requires substantial engineering efforts. Techniques to reuse from one DSL to another and to support customization to meet new requirements are thus particularly welcomed. Over the last decade, the Software Language Engineering (SLE) community has proposed various reuse techniques. However, all these techniques remain disparate and complicate the development of real-world DSLs involving different reuse scenarios. In this paper, we introduce the Concern-Oriented Language Development (COLD) approach, a new language development model that promotes modularity and reusability of language concerns. A language concern is a reusable piece of language that consists of usual language artifacts (e.g., abstract syntax, concrete syntax, semantics) and exhibits three specific interfaces that support (1) variability management, (2) customization to a specific context, and (3) proper usage of the reused artifact. The approach is supported by a conceptual model which introduces the required concepts to implement COLD. We also present concrete examples of some language concerns and the current state of their realization with metamodel-based and grammar-based language workbenches. We expect this work to provide insights into how to foster reuse in language specification and implementation, and how to support it in language workbenches.