Distributed attack detection scheme using deep learning approach for Internet of Things

Citation data:

Future Generation Computer Systems, ISSN: 0167-739X, Vol: 82, Page: 761-768

Publication Year:
Captures 74
Readers 74
Social Media 151
Shares, Likes & Comments 150
Tweets 1
Citations 12
Citation Indexes 12
Abebe Abeshu Diro; Naveen Chilamkurti
Elsevier BV
Computer Science
Most Recent Tweet View All Tweets
article description
Cybersecurity continues to be a serious issue for any sector in the cyberspace as the number of security breaches is increasing from time to time. It is known that thousands of zero-day attacks are continuously emerging because of the addition of various protocols mainly from Internet of Things (IoT). Most of these attacks are small variants of previously known cyber-attacks. This indicates that even advanced mechanisms such as traditional machine learning systems face difficulty of detecting these small mutants of attacks over time. On the other hand, the success of deep learning (DL) in various big data fields has drawn several interests in cybersecurity fields. The application of DL has been practical because of the improvement in CPU and neural network algorithms aspects. The use of DL for attack detection in the cyberspace could be a resilient mechanism to small mutations or novel attacks because of its high-level feature extraction capability. The self-taught and compression capabilities of deep learning architectures are key mechanisms for hidden pattern discovery from the training data so that attacks are discriminated from benign traffic. This research is aimed at adopting a new approach, deep learning, to cybersecurity to enable the detection of attacks in social internet of things. The performance of the deep model is compared against traditional machine learning approach, and distributed attack detection is evaluated against the centralized detection system. The experiments have shown that our distributed attack detection system is superior to centralized detection systems using deep learning model. It has also been demonstrated that the deep model is more effective in attack detection than its shallow counter parts.