The M4 Competition: Results, findings, conclusion and way forward

Citation data:

International Journal of Forecasting, ISSN: 0169-2070, Vol: 34, Issue: 4, Page: 802-808

Publication Year:
2018
Captures 28
Readers 28
Mentions 2
References 1
Q&A Site Mentions 1
Social Media 157
Tweets 153
Shares, Likes & Comments 4
DOI:
10.1016/j.ijforecast.2018.06.001
Author(s):
Spyros Makridakis; Evangelos Spiliotis; Vassilios Assimakopoulos
Publisher(s):
Elsevier BV
Tags:
Business, Management and Accounting
Most Recent Tweet View All Tweets
article description
The M4 competition is the continuation of three previous competitions started more than 45 years ago whose purpose was to learn how to improve forecasting accuracy, and how such learning can be applied to advance the theory and practice of forecasting. The purpose of M4 was to replicate the results of the previous ones and extend them into three directions: First significantly increase the number of series, second include Machine Learning (ML) forecasting methods, and third evaluate both point forecasts and prediction intervals. The five major findings of the M4 Competitions are: 1. Out Of the 17 most accurate methods, 12 were “combinations” of mostly statistical approaches. 2. The biggest surprise was a “hybrid” approach that utilized both statistical and ML features. This method’s average sMAPE was close to 10% more accurate than the combination benchmark used to compare the submitted methods. 3. The second most accurate method was a combination of seven statistical methods and one ML one, with the weights for the averaging being calculated by a ML algorithm that was trained to minimize the forecasting. 4. The two most accurate methods also achieved an amazing success in specifying the 95% prediction intervals correctly. 5. The six pure ML methods performed poorly, with none of them being more accurate than the combination benchmark and only one being more accurate than Naïve2. This paper presents some initial results of M4, its major findings and a logical conclusion. Finally, it outlines what the authors consider to be the way forward for the field of forecasting.