SETL: A programmable semantic extract-transform-load framework for semantic data warehouses

Citation data:

Information Systems, ISSN: 0306-4379, Vol: 68, Page: 17-43

Publication Year:
2017
Usage 308
Abstract Views 293
Link-outs 15
Captures 33
Readers 29
Exports-Saves 4
Social Media 253
Shares, Likes & Comments 253
Citations 1
Citation Indexes 1
DOI:
10.1016/j.is.2017.01.005
Author(s):
Rudra Pratap Deb Nath, Katja Hose, Torben Bach Pedersen, Oscar Romero
Publisher(s):
Elsevier BV
Tags:
Computer Science
article description
In order to create better decisions for business analytics, organizations increasingly use external structured, semi-structured, and unstructured data in addition to the (mostly structured) internal data. Current Extract-Transform-Load (ETL) tools are not suitable for this “open world scenario” because they do not consider semantic issues in the integration processing. Current ETL tools neither support processing semantic data nor create a semantic Data Warehouse (DW), a repository of semantically integrated data. This paper describes our programmable Semantic ETL (SETL) framework. SETL builds on Semantic Web (SW) standards and tools and supports developers by offering a number of powerful modules, classes, and methods for (dimensional and semantic) DW constructs and tasks. Thus it supports semantic data sources in addition to traditional data sources, semantic integration, and creating or publishing a semantic (multidimensional) DW in terms of a knowledge base. A comprehensive experimental evaluation comparing SETL to a solution made with traditional tools (requiring much more hand-coding) on a concrete use case, shows that SETL provides better programmer productivity, knowledge base quality, and performance.

This article has 0 Wikipedia mention.