Parameterized complexity classes beyond para-NP

Citation data:

Journal of Computer and System Sciences, ISSN: 0022-0000, Vol: 87, Page: 16-57

Publication Year:
2017
Usage 117
Abstract Views 117
Captures 2
Exports-Saves 1
Readers 1
Social Media 1
Shares, Likes & Comments 1
DOI:
10.1016/j.jcss.2017.02.002
Author(s):
Ronald de Haan, Stefan Szeider
Publisher(s):
Elsevier BV
Tags:
Mathematics, Computer Science
article description
Today's propositional satisfiability (SAT) solvers are extremely powerful and can be used as an efficient back-end for solving NP-complete problems. However, many fundamental problems in logic, in knowledge representation and reasoning, and in artificial intelligence are located at the second level of the Polynomial Hierarchy or even higher, and hence for these problems polynomial-time transformations to SAT are not possible, unless the hierarchy collapses. Recent research shows that in certain cases one can break through these complexity barriers by fixed-parameter tractable (fpt) reductions to SAT which exploit structural aspects of problem instances in terms of problem parameters. These reductions are more powerful because their running times can grow superpolynomially in the problem parameters. In this paper we develop a general theoretical framework that supports the classification of parameterized problems on whether they admit such an fpt-reduction to SAT or not.

This article has 0 Wikipedia mention.