Aerodynamic drag in competitive tandem para-cycling: Road race versus time-trial positions

Citation data:

Journal of Wind Engineering and Industrial Aerodynamics, ISSN: 0167-6105, Vol: 179, Page: 92-101

Publication Year:
2018
Captures 13
Readers 13
Social Media 25
Tweets 25
Citations 1
Citation Indexes 1
DOI:
10.1016/j.jweia.2018.05.011
Author(s):
Paul Mannion; Yasin Toparlar; Bert Blocken; Eoghan Clifford; Thomas Andrianne; Magdalena Hajdukiewicz
Publisher(s):
Elsevier BV
Tags:
Engineering; Energy
Most Recent Tweet View All Tweets
article description
An athlete's riding posture is a key element for aerodynamic drag in cycling. Tandem cycling has the complication of having two athletes in close proximity to each other on a single tandem bicycle. The complex flow-field between the pilot and stoker in tandem cycling presents new challenges for aerodynamic optimisation. Aerodynamic drag acting on two tandem road race setups and two track time-trial setups were analysed with computational fluid dynamics (CFD) simulations. For validation purposes, wind tunnel measurements were designed providing drag measurements from both tandem athletes simultaneously using a quarter-scale model. A max drag force deviation of 4.9% was found between the wind tunnel experiments and CFD simulations of the quarter-scale geometry. Full-scale CFD simulations of upright, crouched, time-trial and frame-clench tandem setups were performed. The drag force experienced by individual athletes in all investigated tandem setups was compared to that of solo riders to enhance understanding of the aerodynamic interaction between both tandem athletes. The most aerodynamic tandem setup was found to be the frame-clench setup which is unique to tandem cycling and had a C D A of 0.286 m 2, and could provide an advantage of 8.1 s over a standard time-trial setup for a 10 km time-trial event.