A geological framework for temporal sedimentary dynamics

Publication Year:
Usage 953
Abstract Views 521
Downloads 432
Repository URL:
Noll, Christian John
Fjord; sediment; morphology; glacier
book description
Geophysical, geochemical and geotechnical methods were used to investigate the spatial and temporal aspects of sediment distribution, accumulation, post-depositional alterations, and seafloor response and recovery to major events in a temperate, paraglacial, turbid outwash fjord. The goals of this study are to generate a complete geological model and compare the results to the global distribution of fjords. The over arching theme of this study is that the ratio of the area of the watershed to the area of the receiving basin can provide a first order indicator of many factors including glacial mass; the timing of glacial retreat; sediment input, accumulation, and preservation; and other factors. Temporal observations reveal the change of this fjord from a glaciated basin to and estuarine environment. These observations become important when viewed in the context of global climate change and the continued loss of ice. Preserved strata provide a 2800 yr record of changing modes of sedimentation as the system evolved from a glaciated basin to a non-glaciated fjord revealing a detailed chronology of change between end-member systems which can be used to infer changes as glaciers retreat from other fjords. Short lived radio isotopes were used to investigate post-depositional alteration of modern sediments. Without an understanding of how biological and physical processes work to modify sedimentary fabric during preservation, changes seen in sediment and rock core data cannot be accurately resolved. Physical processes can cause erosion and lateral transport; winnowing and armoring; and instantaneous sedimentation, all of which may be preserved. Biological processes can modulate the preservation of strata by destroying sedimentary fabric and integrating signals. The final fundamental need is to investigate the seafloor response and recovery to these events. Massive earthquakes are frequent in the study area and cause perturbations to sediment input and preservation. By understanding how lakes and deltas modulate sediment discharge after the event; how shorelines are modified after the event; and where sediment is deposited we can determine the influence these changes have on the environment and on humans.