New foundations for counterfactuals

Citation data:

Synthese, ISSN: 0039-7857, Vol: 191, Issue: 10, Page: 2167-2193

Publication Year:
Usage 195
Downloads 170
Abstract Views 19
Link-outs 3
HTML Views 3
Captures 15
Readers 13
Exports-Saves 2
Social Media 14
Shares, Likes & Comments 12
Tweets 2
Citations 3
Citation Indexes 3
Repository URL:
Franz Huber
Springer Nature, Springer
Arts and Humanities, Social Sciences
Most Recent Tweet View All Tweets
article description
Philosophers typically rely on intuitions when providing a semantics for counterfactual conditionals. However, intuitions regarding counterfactual conditionals are notoriously shaky. The aim of this paper is to provide a principled account of the semantics of counterfactual conditionals. This principled account is provided by what I dub the Royal Rule, a deterministic analogue of the Principal Principle relating chance and credence. The Royal Rule says that an ideal doxastic agent’s initial grade of disbelief in a proposition $$A$$A, given that the counterfactual distance in a given context to the closest $$A$$A-worlds equals $$n$$n, and no further information that is not admissible in this context, should equal $$n$$n. Under the two assumptions that the presuppositions of a given context are admissible in this context, and that the theory of deterministic alethic or metaphysical modality is admissible in any context, it follows that the counterfactual distance distribution in a given context has the structure of a ranking function. The basic conditional logic V is shown to be sound and complete with respect to the resulting rank-theoretic semantics of counterfactuals.

This article has 0 Wikipedia mention.