# Space-time Philosophy Reconstructed via Massive Nordström Scalar Gravities? Laws vs. Geometry, Conventionality, and Underdetermination

- Publication Year:
- 2015

## Explore PlumX Metrics

What are PlumX Metrics? How can they help tell the story about this research? How can I use them?

Learn more- Repository URL:
- http://philsci-archive.pitt.edu/id/eprint/11668

- Author(s):

##### preprint description

What if gravity satisfied the Klein-Gordon equation? Both particle physics from the 1920s-30s and the 1890s Neumann-Seeliger modification of Newtonian gravity with exponential decay suggest considering a "graviton mass term" for gravity, which is _algebraic_ in the potential. Unlike Nordström's "massless" theory, massive scalar gravity is strictly special relativistic in the sense of being invariant under the Poincaré group but not the 15-parameter Bateman-Cunningham conformal group. It therefore exhibits the whole of Minkowski space-time structure, albeit only indirectly concerning volumes. Massive scalar gravity is plausible in terms of relativistic field theory, while violating most interesting versions of Einstein's principles of general covariance, general relativity, equivalence, and Mach. Geometry is a poor guide to understanding massive scalar gravity(s): matter sees a conformally flat metric due to universal coupling, but gravity also sees the rest of the flat metric (barely or on long distances) in the mass term. What is the 'true' geometry, one might wonder, in line with Poincaré's modal conventionality argument? Infinitely many theories exhibit this bimetric 'geometry,' all with the total stress-energy's trace as source; thus geometry does not explain the field equations. The irrelevance of the Ehlers-Pirani-Schild construction to a critique of conventionalism becomes evident when multi-geometry theories are contemplated. Much as Seeliger envisaged, the smooth massless limit indicates underdetermination of theories by data between massless and massive scalar gravities---indeed an unconceived alternative. At least one version easily could have been developed before General Relativity; it then would have motivated thinking of Einstein's equations along the lines of Einstein's newly re-appreciated "physical strategy" and particle physics and would have suggested a rivalry from massive spin 2 variants of General Relativity (massless spin 2, Pauli and Fierz found in 1939). The Putnam-Grünbaum debate on conventionality is revisited with an emphasis on the broad modal scope of conventionalist views. Massive scalar gravity thus contributes to a historically plausible rational reconstruction of much of 20th-21st century space-time philosophy in the light of particle physics. An appendix reconsiders the Malament-Weatherall-Manchak conformal restriction of conventionality and constructs the 'universal force' influencing the causal structure. Subsequent works will discuss how massive gravity could have provided a template for a more Kant-friendly space-time theory that would have blocked Moritz Schlick's supposed refutation of synthetic _a priori_ knowledge, and how Einstein's false analogy between the Neumann-Seeliger-Einstein modification of Newtonian gravity and the cosmological constant \Lambda generated lasting confusion that obscured massive gravity as a conceptual possibility.