La argumentación abstracta en Inteligencia Artificial: problemas de interpretación y adecuación de las semánticas para la toma de decisiones

Citation data:

THEORIA. An International Journal for Theory, History and Foundations of Science, ISSN: 0495-4548, Vol: 30, Issue: 3, Page: 395-414

Publication Year:
2015
Usage 1206
Abstract Views 604
HTML Views 517
Link-outs 47
Downloads 38
Captures 177
Exports-Saves 161
Readers 16
Repository URL:
http://philsci-archive.pitt.edu/id/eprint/12158
DOI:
10.1387/theoria.13150
Author(s):
Gustavo Adrián Bodanza
Publisher(s):
UPV/EHU Press, Euskal Herriko Unibertsitatea / Universidad del País Vasco
Tags:
Arts and Humanities
article description
The abstract argumentation frameworks model is currently the most used tool for characterizing the justification of defeasible arguments in Artificial Intelligence. Justifications are determined on a given attack relation among arguments and are formalized as extension semantics. In this work we argue that, contrariwise to the assumptions in that model, either some argumentation frameworks are meaningless under certain concrete definitions of the attack relation, or some of the most used extension semantics in the literature, based on the defense notion of admissibility, are not suitable in particular for the justification of arguments for decision making.

This article has 0 Wikipedia mention.