Repository URL:
http://philsci-archive.pitt.edu/id/eprint/13158
Author(s):
Suddhasattwa Brahma
Most Recent Tweet View All Tweets
conference paper description
Loop quantum gravity has formalized a robust scheme in resolving classical singularities in a variety of symmetry-reduced models of gravity. In this essay, we demonstrate that the same quantum correction which is crucial for singularity resolution is also responsible for the phenomenon of signature change in these models, whereby one effectively transitions from a 'fuzzy' Euclidean space to a Lorentzian space-time in deep quantum regimes. As long as one uses a quantization scheme which respects covariance, holonomy corrections from loop quantum gravity generically leads to non-singular signature change, thereby giving an emergent notion of time in the theory. Robustness of this mechanism is established by comparison across large class of midisuperspace models and allowing for diverse quantization ambiguities. Conceptual and mathematical consequences of such an underlying quantum-deformed space-time are briefly discussed.

This conference paper has 0 Wikipedia mention.