Weak Values and Consistent Histories in Quantum Theory

Publication Year:
Usage 309
Downloads 309
Repository URL:
Kastner, Ruth
preprint description
ABSTRACT: A relation is obtained between weak values of quantum observables and the consistency criterion for histories of quantum events. It is shown that ``strange'' weak values for projection operators (such as values less than zero) always correspond to inconsistent families of histories. It is argued that using the ABL rule to obtain probabilities for counterfactual measurements corresponding to those strange weak values gives inconsistent results. This problem is shown to be remedied by using the conditional weight, or pseudo-probability, obtained from the multiple-time application of Luders' Rule. It is argued that an assumption of reverse causality (a form of time symmetry) implies that weak values obtain, in a restricted sense, at the time of the weak measurement as well as at the time of post-selection. Finally, it is argued that weak values are more appropriately characterised as multiple-time amplitudes than expectation values, and as such can have little to say about counterfactual questions.