Repository URL:
http://philsci-archive.pitt.edu/id/eprint/3301
Author(s):
A. Matzkin
preprint description
We investigate two-particle phase-space distributions in classical mechanics characterized by a well-defined value of the total angular momentum. We construct phase-space averages of observables related to the projection of the particles' angular momenta along axes with different orientations. It is shown that for certain observables, the correlation function violates Bell's inequality. The key to the violation resides in choosing observables impeding the realization of the counterfactual event that plays a prominent role in the derivation of the inequalities. This situation can have statistical (detection related) or dynamical (interaction related) underpinnings, but non-locality does not play any role.

This preprint has 0 Wikipedia mention.