Repository URL:
http://philsci-archive.pitt.edu/id/eprint/3875
Author(s):
Olimpia Lombardi, Mario Castagnino
preprint description
The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by applying it to well-known physical situations. Moreover, we explain how this interpretation supplies a description of the elemental categories of the ontology referred to by the theory, where quantum systems turn out to be bundles of possible properties

This preprint has 0 Wikipedia mention.