Ten Reasons for Pursuing Multi-Commutative Quantum Theories

Publication Year:
Usage 287
Downloads 287
Repository URL:
Petrov, Assen
preprint description
Mathematical developments in the 1970s (geometric spectral theory) and 1980s (invariant cones in finite-dimensional Lie algebras) suggest a revision of the standard non-commutative quantum language. Invariantly and covariantly lattice-ordered Lie algebras can replace the known descriptions of the classical and quantum Hamiltonian dynamical systems. The standard operator (or algebraic) quantum theory appears as a factorization of a new multi-commutative model. The multi-commutativity reflects the dependence of the quantum variables on the choice of their measurement procedures--a property required by but not present in the standard quantum theory. The multi-commutativity quantum project needs an advanced theory of invariantly and covariantly ordered infinite dimensional Lie algebras, structures not yet visible on the mathematical agenda.