Repository URL:
http://philsci-archive.pitt.edu/id/eprint/4314
Author(s):
Alexandre Korolev
conference paper description
The singularity arising from the violation of the Lipschitz condition in the simple Newtonian system proposed recently by Norton (2003) is so fragile as to be completely and irreparably destroyed by slightly relaxing certain (infinite) idealizations pertaining to elastic phenomena in this model. I demonstrate that this is also true for several other Lipschitz-indeterministic systems, which, unlike Norton's example, have no surface curvature singularities. As a result, indeterminism in these systems should rather be viewed as an artefact of certain infinite idealizations essential for these models, depriving them of much of their intended metaphysical import.

This conference paper has 0 Wikipedia mention.