Repository URL:
http://philsci-archive.pitt.edu/id/eprint/8776
Author(s):
Shan Gao
preprint description
The meaning of the wave function and its evolution are investigated. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation invariance and relativistic invariance. Thirdly, we argue that the random discontinuous motion of particles may lead to a stochastic, nonlinear collapse evolution of the wave function. A discrete model of energy-conserved wavefunction collapse is proposed and shown consistent with existing experiments and our macroscopic experience. Besides, we also give a critical analysis of the de Broglie-Bohm theory, the many-worlds interpretation and other dynamical collapse theories, and briefly discuss the issues of unifying quantum mechanics and relativity.

This preprint has 0 Wikipedia mention.