Repository URL:
Roman Frigg, Charlotte Werndl
preprint description
Gases reach equilibrium when left to themselves. Why do they behave in this way? The canonical answer to this question, originally proffered by Boltzmann, is that the systems have to be ergodic. This answer has been criticised on different grounds and is now widely regarded as flawed. In this paper we argue that some of the main arguments against Boltzmann's answer, in particular, arguments based on the KAM-theorem and the Markus-Meyer theorem, are beside the point. We then argue that something close to Boltzmann's original proposal is true for gases: gases behave thermodynamic-like if they are epsilon-ergodic, i.e., ergodic on the entire accessible phase space except for a small region of measure epsilon. This answer is promising because there are good reasons to believe that relevant systems in statistical mechanics are epsilon-ergodic.

This preprint has 0 Wikipedia mention.