Soot measurements by two angle scattering and extinction in an N 2 -diluted ethylene/air counterflow diffusion flame from 2 to 5 atm

Citation data:

Proceedings of the Combustion Institute, ISSN: 1540-7489, Vol: 36, Issue: 1, Page: 861-869

Publication Year:
2017
Usage 2
Abstract Views 2
Captures 21
Readers 21
Citations 5
Citation Indexes 5
Repository URL:
http://hdl.handle.net/10754/627029
DOI:
10.1016/j.proci.2016.06.044
Author(s):
Amin, Hafiz M.F.; Roberts, William L.
Publisher(s):
Elsevier BV
Tags:
Chemical Engineering; Engineering; Chemistry; Counterflow diffusion flames; High pressure; Scattering; Soot parameters
article description
The soot formed in an N 2 -diluted ethylene/air counterflow diffusion flame at elevated pressure was investigated using two angle light scattering/extinction technique. To provide a well-controlled pressurized environment for the flame, a novel pressure vessel was built with the required optical access. The soot parameters were measured along the centerline of the counterflow flame. These properties included soot volume fraction ( fv ), primary particle diameter ( dp ), population averaged radius of gyration ( Rg ) and number density of primary particles ( np ). The Rayleigh–Debye–Gans theory for Fractal Aggregates (RDG-FA) was used to retrieve these properties from scattering and extinction measurements. Soot volume fraction was measured via light extinction from 2 to 5 atm while maintaining the same global strain rate at all pressures. Scattered light from soot particles was measured at 45° and 135° and primary particle diameter was calculated using scattering/extinction ratio and the radius of gyration was determined from the dissymmetry ratio. Soot volume fraction, primary particle diameter and radius of gyration all increased with pressure while the number density of primary particles decreased with increasing pressure.