Tunable graphene doping by modulating the nanopore geometry on a SiO/Si substrate

Citation data:

RSC Advances, ISSN: 2046-2069, Vol: 8, Issue: 17, Page: 9031-9037

Publication Year:
Usage 10
Downloads 7
Abstract Views 3
Captures 2
Readers 2
Repository URL:
Namsoo Lim; Tae Jin Yoo; Yogeenth Kumaresan; Hyeonghun Kim; Woochul Kim; Byoung Hun Lee; Gun Young Jung; Jin Tae Kim; Yusin Pak
Royal Society of Chemistry (RSC); The Royal Society of Chemistry; Royal Society of Chemistry
Chemistry; Chemical Engineering
article description
A tunable graphene doping method utilizing a SiO/Si substrate with nanopores (NP) was introduced. Laser interference lithography (LIL) using a He-Cd laser (λ = 325 nm) was used to prepare pore size- and pitch-controllable NP SiO/Si substrates. Then, bottom-contact graphene field effect transistors (G-FETs) were fabricated on the NP SiO/Si substrate to measure the transfer curves. The graphene transferred onto the NP SiO/Si substrate showed relatively n-doped behavior compared to the graphene transferred onto a flat SiO/Si substrate, as evidenced by the blue-shift of the 2D peak position (∼2700 cm) in the Raman spectra due to contact doping. As the porosity increased within the substrate, the Dirac voltage shifted to a more positive or negative value, depending on the initial doping type (p- or n-type, respectively) of the contact doping. The Dirac voltage shifts with porosity were ascribed mainly to the compensation for the reduced capacitance owing to the SiO-air hetero-structured dielectric layer within the periodically aligned nanopores capped by the suspended graphene (electrostatic doping). The hysteresis (Dirac voltage difference during the forward and backward scans) was reduced when utilizing an NP SiO/Si substrate with smaller pores and/or a low porosity because fewer HO or Omolecules could be trapped inside the smaller pores.