Tailoring spin-orbit torque in diluted magnetic semiconductors

Citation data:

Applied Physics Letters, ISSN: 0003-6951, Vol: 102, Issue: 19

Publication Year:
2013
Usage 117
Downloads 68
Abstract Views 41
Full Text Views 8
Captures 1
Exports-Saves 1
Citations 10
Citation Indexes 10
arXiv Id:
1211.0867
DOI:
10.1063/1.4806981
Repository URL:
http://scholarsmine.mst.edu/matsci_eng_facwork/443; http://hdl.handle.net/10754/552325; http://arxiv.org/abs/1211.0867
Author(s):
Li, Hang; Wang, Xuhui; Doǧan, Fatih; Manchon, Aurelien
Publisher(s):
AIP Publishing; American Institute of Physics (AIP)
Tags:
Physics and Astronomy; Crystal Structure; Exchange Interactions (Electron); Fermi Surface; Gallium Arsenide; Galvanomagnetic Effects; III-V Semiconductors; Indium Compounds; Localised States; Magnetisation; Manganese Compounds; Semimagnetic Semiconductors; Spin Polarised Transport; Spin-Orbit Interactions; Torque; Condensed Matter - Mesoscale and Nanoscale Physics; Condensed Matter - Statistical Mechanics; Crystal Structure; Exchange Interactions (Electron); Fermi Surface; Gallium Arsenide; Galvanomagnetic Effects; III-V Semiconductors; Indium Compounds; Localised States; Magnetisation; Manganese Compounds; Semimagnetic Semiconductors; Spin Polarised Transport; Spin-Orbit Interactions; Torque; Materials Science and Engineering
article description
We study the spin orbit torque arising from an intrinsic linear Dresselhaus spin-orbit coupling in a single layer III-V diluted magnetic semiconductor. We investigate the transport properties and spin torque using the linear response theory, and we report here: (1) a strong correlation exists between the angular dependence of the torque and the anisotropy of the Fermi surface; (2) the spin orbit torque depends nonlinearly on the exchange coupling. Our findings suggest the possibility to tailor the spin orbit torque magnitude and angular dependence by structural design. © 2013 AIP Publishing LLC.