Efficient computation of smoothing splines via adaptive basis sampling

Citation data:

Biometrika, ISSN: 1464-3510, Vol: 102, Issue: 3, Page: 631-645

Publication Year:
Usage 58
Abstract Views 50
Link-outs 5
Full Text Views 3
Captures 10
Readers 9
Exports-Saves 1
Citations 5
Citation Indexes 5
Repository URL:
http://scholars.library.tamu.edu/vivo/display/n128561SE; http://hdl.handle.net/10754/598102
Ma, Ping; Huang, Jianhua Z.; Zhang, Nan
Oxford University Press (OUP)
Mathematics; Agricultural and Biological Sciences; Decision Sciences; Bayesian confidence interval; Core-mantle boundary; Nonparametric regression; Penalized least squares; Reproducing kernel Hilbert space; Sampling
article description
Smoothing splines provide flexible nonparametric regression estimators. However, the high computational cost of smoothing splines for large datasets has hindered their wide application. In this article, we develop a new method, named adaptive basis sampling, for efficient computation of smoothing splines in super-large samples. Except for the univariate case where the Reinsch algorithm is applicable, a smoothing spline for a regression problem with sample size n can be expressed as a linear combination of n basis functions and its computational complexity is generally O(n). We achieve a more scalable computation in the multivariate case by evaluating the smoothing spline using a smaller set of basis functions, obtained by an adaptive sampling scheme that uses values of the response variable. Our asymptotic analysis shows that smoothing splines computed via adaptive basis sampling converge to the true function at the same rate as full basis smoothing splines. Using simulation studies and a large-scale deep earth core-mantle boundary imaging study, we show that the proposed method outperforms a sampling method that does not use the values of response variables.