Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

Citation data:

GEOPHYSICS, ISSN: 0016-8033, Vol: 81, Issue: 2, Page: T63-T77

Publication Year:
Usage 52
Downloads 48
Abstract Views 4
Captures 9
Readers 8
Exports-Saves 1
Citations 7
Citation Indexes 7
Repository URL:
Cheng, Jiubing; Alkhalifah, Tariq Ali; Wu, Zedong; Zou, Peng; Wang, Chenlong
Society of Exploration Geophysicists
Earth and Planetary Sciences; anisotropy; elastic; decomposition; wave propagation; polarization
article description
In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.