Actin turnover maintains actin filament homeostasis during cytokinetic ring contraction.

Citation data:

The Journal of cell biology, ISSN: 1540-8140, Vol: 216, Issue: 9, Page: 2657-2667

Publication Year:
Captures 36
Readers 36
Social Media 1
Tweets 1
Citations 1
Citation Indexes 1
Chew, Ting Gang; Huang, Junqi; Palani, Saravanan; Sommese, Ruth; Kamnev, Anton; Hatano, Tomoyuki; Gu, Ying; Oliferenko, Snezhana; Sivaramakrishnan, Sivaraj; Balasubramanian, Mohan K
Rockefeller University Press
Biochemistry, Genetics and Molecular Biology
Most Recent Tweet View All Tweets
article description
Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, using , we investigate the role of turnover of actin and myosin II in its contraction. Actomyosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially.