Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application.

Citation data:

Materials science & engineering. C, Materials for biological applications, ISSN: 1873-0191, Vol: 82, Page: 163-181

Publication Year:
2018
Usage 33
Abstract Views 30
Link-outs 3
Captures 20
Readers 20
Citations 1
Citation Indexes 1
PMID:
29025644
DOI:
10.1016/j.msec.2017.08.040
Author(s):
Gandolfi, Maria Giovanna; Zamparini, Fausto; Degli Esposti, Micaela; Chiellini, Federica; Aparicio, Conrado; Fava, Fabio; Fabbri, Paola; Taddei, Paola; Prati, Carlo
Publisher(s):
Elsevier BV
Tags:
Materials Science; Physics and Astronomy; Engineering
article description
Polylactic acid (PLA), dicalcium phosphate dihydrate (DCPD) and/or hydraulic calcium silicate (CaSi) have been used to prepare highly-porous scaffolds by thermally induced phase separation technique (TIPS). Three experimental mineral-doped formulations were prepared (PLA-10CaSi, PLA-5CaSi-5DCPD, PLA-10CaSi-10DCPD). Pure PLA scaffolds constituted the control group. Scaffolds were tested for their chemical-physical and biological properties, namely calcium release, alkalinizing activity, surface microchemistry and micromorphology by ESEM, apatite-forming ability by EDX, micro-Raman and IR spectroscopy, thermal properties by differential scanning calorimetry, mechanical properties by quasi-static parallel-plates compression testing, porosity by a standard water-absorption method and direct-contact cytotoxicity. All mineral-doped scaffolds released biologically relevant ions (biointeractive). A B-type carbonated apatite layer (thickness decreasing along the series PLA-10CaSi-10DCPD>PLA-10CaSi>PLA-5CaSi-5DCPD>PLA) was detected on the surface of all the 28d-aged scaffolds. Surface pores of fresh scaffolds ranged from 10 to 20μm in pure PLA to 10-100μm in PLA-10CaSi. An increase in porosity was detected in 28d-aged pure PLA scaffolds (approx. 30% of material loss with decrease of the PLA chain length); differently, in mineral-doped scaffolds, the PLA degradation was balanced by deposition/nucleation of apatite. All scaffolds showed absence of toxicity, in particular PLA-10CaSi-10DCPD. The designed scaffolds are biointeractive (release biologically relevant ions), nucleate apatite, possess high surface and internal open porosity and can be colonized by cells, appearing interesting materials for bone regeneration.