Polysaccharide-based electroconductive films for controlled release of ciprofloxacin
Journal of Applied Polymer Science, ISSN: 1097-4628, Vol: 139, Issue: 32
2022
- 9Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hereby, fabrication of hyaluronic acid/gelatin/sodium alginate (HA/Gel/SA) polymeric films, which contain electroconductive poly(3,4ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) particles, is studied for drug release applications. The characterization of synthesized PEDOT:PSS and HA/Gel/SA-(PEDOT:PSS) films is verified by using FT-IR and RAMAN spectroscopy. Conductivity values of the films containing 0, 4, and 6% v/v PEDOT:PSS are found via a four-point probe technique to determine the optimum composition of the films for the targeted field. Additionally, swelling, mechanical, and cytotoxicity tests are carried out according to the related methods. Ciprofloxacin (CIP), which is a commonly used antibiotic, is loaded into the polymeric matrix and its release behavior is investigated. All results indicate that the incorporation of PEDOT:PSS increases the mechanical performance and decreases the burst release of drug resulted in more sustained release profile. The HA/Gel/SA-(PEDOT: PSS) formulation is clearly a promising drug carrier that also supports cell viability due to its high cytocompatibility.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know