Parameter heterogeneity in breast cancer cost regressions - Evidence from five European countries
Health Economics (United Kingdom), ISSN: 1099-1050, Vol: 24, Issue: S2, Page: 23-37
2015
- 28Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations28
- Citation Indexes28
- CrossRef4
- Captures24
- Readers24
- 24
Article Description
We investigate parameter heterogeneity in breast cancer 1-year cumulative hospital costs across five European countries as part of the EuroHOPE project. The paper aims to explore whether conditional mean effects provide a suitable representation of the national variation in hospital costs. A cohort of patients with a primary diagnosis of invasive breast cancer (ICD-9 codes 174 and ICD-10 C50 codes) is derived using routinely collected individual breast cancer data from Finland, the metropolitan area of Turin (Italy), Norway, Scotland and Sweden. Conditional mean effects are estimated by ordinary least squares for each country, and quantile regressions are used to explore heterogeneity across the conditional quantile distribution. Point estimates based on conditional mean effects provide a good approximation of treatment response for some key demographic and diagnostic specific variables (e.g. age and ICD-10 diagnosis) across the conditional quantile distribution. For many policy variables of interest, however, there is considerable evidence of parameter heterogeneity that is concealed if decisions are based solely on conditional mean results. The use of quantile regression methods reinforce the need to consider beyond an average effect given the greater recognition that breast cancer is a complex disease reflecting patient heterogeneity.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84949517202&origin=inward; http://dx.doi.org/10.1002/hec.3274; http://www.ncbi.nlm.nih.gov/pubmed/26633866; https://onlinelibrary.wiley.com/doi/10.1002/hec.3274; http://doi.wiley.com/10.1002/hec.3274; http://onlinelibrary.wiley.com/doi/10.1002/hec.3274/abstract
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know