A control based on a knapsack problem for solar hydrogen production
Optimal Control Applications and Methods, ISSN: 1099-1514, Vol: 37, Issue: 3, Page: 496-507
2016
- 9Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Hydrosol pilot plant was installed in the small solar power systems solar tower at CIEMAT-Plataforma Solar de Almería (PSA), Spain, for producing solar hydrogen from water using a ferrite-based redox technology. It consists of two reactors where hydrogen and oxygen production cycles are alternated for quasi-continuous hydrogen production. In the first step (water splitting), an exothermic reaction takes place at an operating temperature of 800?. The second step (thermal reduction) is an endothermic reaction, which requires an operating temperature of 1200?. Recently, an adaptive control strategy for controlling these operating temperatures in the solar hydrogen reactor has been proposed and implemented, using the number of heliostats focused as the control signal. The algorithm chooses which heliostats have to be focused estimating the concentrated solar power contribution of each heliostat. Then, the heliostats are focused, starting from those which provide lower power. This paper is based on this control strategy, but considering a new algorithm to choose the heliostats. Using the concentrated solar power contributions, a knapsack problem is defined to obtain a local optimal solution, which provides a set of heliostats that minimizes the error between the setpoint and the reactor concentrated solar power. In order to evaluate the performance of this method, simulation and experimental results are shown and discussed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know