Growth of sea cucumber collagen fibrils occurs at the tips and centers in a coordinated manner 1 1Edited by W. Baumeister
Journal of Molecular Biology, ISSN: 0022-2836, Vol: 284, Issue: 5, Page: 1417-1424
1998
- 27Citations
- 27Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations27
- Citation Indexes26
- 26
- CrossRef23
- Patent Family Citations1
- Patent Families1
- Captures27
- Readers27
- 27
Article Description
Collagen fibrils are the principle source of mechanical strength in the mutable dermis of the sea cucumber Cucumaria frondosa. To obtain information about the mechanism by which collagen molecules self-assemble into fibrils, we have isolated single intact fibrils with lengths in the range 14–444 μm. These fibrils have been studied by scanning transmission electron microscopy, yielding data that show how cross-sectional mass, and hence the number of molecules in the cross-section, depend on axial location. In an individual fibril, the two ends always display similar mass distributions. The two tips of each fibril must therefore maintain identity in shape and size throughout growth. The linear relationship between cross-sectional mass and distance from the adjacent end shows that a growing tip is (like the tip of a vertebrate collagen fibril) paraboloidal in shape. Comparison of data from many different fibrils, over a wide range of lengths, however, revealed that the paraboloidal tip becomes blunter as the fibril grows in length. In contrast to vertebrate fibrils, those from C. frondosa do not have a central shaft region of constant cross-sectional mass. Rather, the cross-sectional mass increases to a maximum in the center of each fibril. The maximum cross-sectional mass of the fibrils increases exponentially with increasing fibril length. The centrosymmetry, the paraboloidal shape of the tips, and the hyperbolic increase in maximum cross-sectional mass with fibril length, is evidence for a co-ordinated regulation of length and diameter, which differs from the kind of regulation that gives rise to collagen fibrils in vertebrates (chickens and mice).
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022283698922306; http://dx.doi.org/10.1006/jmbi.1998.2230; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0032545170&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/9878360; https://linkinghub.elsevier.com/retrieve/pii/S0022283698922306; https://dx.doi.org/10.1006/jmbi.1998.2230
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know