Correlative Super Resolution and Electron Microscopy to Detect Molecules in Their Native Cellular Context
Neuromethods, ISSN: 1940-6045, Vol: 155, Page: 1-13
2020
- 1Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Nano-resolution fluorescence electron microscopy (nano-fEM) provides the precise localization of biomacromolecules within electron micrographs. Classically, electron microscopy has provided the highest possible cellular detail, boasting nanometer-scale resolution. However, while cellular ultrastructure is clearly defined, molecular identity is obscured even when electron dense tags in the form of antibodies or locally polymerized moieties are used. Fluorescence microscopy complements electron microscopy by providing significant molecular specificity. Further, super-resolution techniques surpass the diffraction limit and localize labelled proteins at ~20 nm resolution. However, sparse light-emitting points do little to provide the subcellular context of labeled molecules. In nano-fEM, fluorescently tagged biological samples are first high-pressure frozen and processed via freeze substitution for fixation and to preserve fluorescence. Afterwards, samples are embedded in hydrophilic resin, cut into ultrathin sections, and visualized by, for example, direct stochastic optical reconstruction microscopy (dSTORM) followed by transmission electron microscopy. Fluorescence and electron micrographs are correlated by use of fiduciary markers and post-processing. This approach also provides 3D information similar to Array Tomography by serial sectioning of ultrathin sections followed by super-resolution microscopy and electron microscopy of each section in a sequential manner, enabling 3D reconstruction of the z axis.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85088427409&origin=inward; http://dx.doi.org/10.1007/978-1-0716-0691-9_1; http://link.springer.com/10.1007/978-1-0716-0691-9_1; http://link.springer.com/content/pdf/10.1007/978-1-0716-0691-9_1; https://dx.doi.org/10.1007/978-1-0716-0691-9_1; https://link.springer.com/protocol/10.1007/978-1-0716-0691-9_1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know