PlumX Metrics
Embed PlumX Metrics

Wave finite element schemes for vibrations and noise under turbulent boundary layer excitation

Flinovia-Flow Induced Noise and Vibration Issues and Aspects-III, Page: 311-342
2021
  • 0
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Book Chapter Description

In the framework of finite elements based methods, this work proposes two numerical approaches to deal with the vibrations and noise induced by a random excitation on periodic and homogeneous structural systems. First, a 1D Wave Finite Element scheme is developed to deal with flat, curved and tapered finite structures. A single substructure is modelled using finite elements and one-dimensional periodic links among nodes are applied to get the set of waves propagating along the periodicity direction. The set of waves is then used to calculate the Green transfer functions between a set of target degrees of freedom and a subset representing the loaded ones. A 2D approach is also developed in combination with a wavenumber-space load synthesis to simulate the sound transmission of infinite flat, curved and axisymmetric structures: both homogenised and complex periodic models are analysed. The proposed numerical approaches are validated with analytical, numerical and experimental results and under different load conditions. From the experimental point of view, the approach is validated comparing results in terms of transmission loss evaluated on aircraft fuselage panels under diffuse acoustic field excitation.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know