Territorial Energy Potential for Energy Community and Climate Mitigation Actions: Experimentation on Pilot Cases in Rome
Urban Book Series, ISSN: 2365-7588, Vol: Part F813, Page: 505-522
2023
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Book Chapter Description
One of the conditions toward mitigation and a zero-emission economy is to plan the transition to a sustainable urban energy system. The dimensional and typological variety of urban pattern, and the functional contribution of inhabitants, represent an important potential to reduce energy consumption and climate-changing gases. Despite this evidence, many studies focused on the energy transition have given limited attention to issues of scale, space, and context in urban settings and how they can shape different energy systems. This article deals with renewable energy communities in the urban context and, by presenting some results of research that, through pilot cases in Rome, aims to test mitigation and adaptation solutions in proximity spaces. In particular, it investigates how the different forms of already built urban fabrics, together with social and environmental resources, can influence the form and implementation of the decentralized energy system and vice versa.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85163971713&origin=inward; http://dx.doi.org/10.1007/978-3-031-29515-7_46; https://link.springer.com/10.1007/978-3-031-29515-7_46; https://dx.doi.org/10.1007/978-3-031-29515-7_46; https://link.springer.com/chapter/10.1007/978-3-031-29515-7_46
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know