Fast homomorphic SVM inference on encrypted data
Neural Computing and Applications, ISSN: 1433-3058, Vol: 34, Issue: 18, Page: 15555-15573
2022
- 4Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Kernel methods are popular machine learning methods that provide automated pattern analysis of raw datasets. Of particular interest is Support Vector Machines that are used to solve supervised machine learning problems in many areas such as business, finance and healthcare. Nowadays, complex computations and data analytic tasks can be outsourced to specialized third parties. However, data owners might be reluctant to share their data especially when it includes sensitive information. Therefore, a need for privacy-preserving machine learning applications cannot be overstated. We present FHSVM: a Fast Homomorphic evaluation of non-linear SVM prediction on encrypted data using Fully Homomorphic Encryption. We provide design, implementation and several algorithmic and architectural optimizations such as novel packing strategies and parallel implementation to achieve real-time private prediction. We employed the CKKS FHE scheme to implement FHSVM under 128-bit security level. We evaluated FHSVM on a contemporary real-world large dataset compiled for anti-money laundering tasks in Bitcoin transactions. Empirical analysis demonstrates that homomorphic SVM prediction can be performed in 1.25 s on multi-core CPU platforms. In addition, FHSVM shows zero accuracy loss when compared to the non-privacy-preserving implementation. This shows that FHSVM is both computationally secure and fully utilizes the data.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know