Balas formulation for the union of polytopes is optimal
Mathematical Programming, ISSN: 1436-4646, Vol: 180, Issue: 1-2, Page: 311-326
2020
- 7Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A celebrated theorem of Balas gives a linear mixed-integer formulation for the union of two nonempty polytopes whose relaxation gives the convex hull of this union. The number of inequalities in Balas formulation is linear in the number of inequalities that describe the two polytopes and the number of variables is doubled. In this paper we show that this is best possible: in every dimension there exist two nonempty polytopes such that if a formulation for the convex hull of their union has a number of inequalities that is polynomial in the number of inequalities that describe the two polytopes, then the number of additional variables is at least linear in the dimension of the polytopes. We then show that this result essentially carries over if one wants to approximate the convex hull of the union of two polytopes and also in the more restrictive setting of lift-and-project.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know