Branching processes with immigration in atypical random environment
Extremes, ISSN: 1572-915X, Vol: 25, Issue: 1, Page: 55-77
2022
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Motivated by a seminal paper of Kesten et al. (Ann. Probab., 3(1), 1–31, 1975) we consider a branching process with a conditional geometric offspring distribution with i.i.d. random environmental parameters A, n ≥ 1 and with one immigrant in each generation. In contrast to above mentioned paper we assume that the environment is long-tailed, that is that the distribution F of ξ: = log((1 − A) / A) is long-tailed. We prove that although the offspring distribution is light-tailed, the environment itself can produce extremely heavy tails of the distribution of the population size in the n th generation which becomes even heavier with increase of n. More precisely, we prove that, for all n, the distribution tail ℙ(Z≥ m) of the n th population size Z is asymptotically equivalent to nF¯ (logm) as m grows. In this way we generalise Bhattacharya and Palmowski (Stat. Probab. Lett., 154, 108550, 2019) who proved this result in the case n = 1 for regularly varying environment F with parameter α > 1. Further, for a subcritical branching process with subexponentially distributed ξ, we provide the asymptotics for the distribution tail ℙ(Z> m) which are valid uniformly for all n, and also for the stationary tail distribution. Then we establish the “principle of a single atypical environment” which says that the main cause for the number of particles to be large is the presence of a single very small environmental parameter A.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know