Gravitational lensing beyond geometric optics: II. Metric independence
General Relativity and Gravitation, ISSN: 1572-9532, Vol: 51, Issue: 12
2019
- 6Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Typical applications of gravitational lensing use the properties of electromagnetic or gravitational waves to infer the geometry through which those waves propagate. Nevertheless, the optical fields themselves—as opposed to their interactions with material bodies—encode very little of that geometry: it is shown here that any given configuration is compatible with a very large variety of spacetime metrics. For scalar fields in geometric optics, or observables which are not sensitive to the detailed polarization content of electromagnetic or gravitational waves, seven of the ten metric components are essentially irrelevant. With polarization, five components are irrelevant. In the former case, this result together with diffeomorphism invariance allows essentially any geometric-optics configuration associated with a particular spacetime to be embedded into any other spacetime, at least in finite regions. Going beyond the geometric-optics approximation breaks some of this degeneracy, although much remains even then. Overall, high-frequency wave propagation is shown to be insensitive to compositions of certain conformal, Kerr–Schild, and related transformations of the background metric. One application is that new solutions for scalar, electromagnetic, and gravitational waves may be generated from old ones. In one example described here, the high-frequency scattering of a plane wave by a point mass is computed by transforming a plane wave in flat spacetime.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85076411245&origin=inward; http://dx.doi.org/10.1007/s10714-019-2646-7; http://link.springer.com/10.1007/s10714-019-2646-7; http://link.springer.com/content/pdf/10.1007/s10714-019-2646-7.pdf; http://link.springer.com/article/10.1007/s10714-019-2646-7/fulltext.html; https://dx.doi.org/10.1007/s10714-019-2646-7; https://link.springer.com/article/10.1007/s10714-019-2646-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know