Predicting user demographics based on interest analysis in movie dataset
Multimedia Tools and Applications, ISSN: 1573-7721, Vol: 83, Issue: 27, Page: 69973-69987
2024
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
These days, due to the increasing amount of information generated on the web, most web service providers try to personalize their services. Users also interact with web-based systems in multiple ways and state their interests and preferences by rating the provided items. In this paper, we propose a framework to predict users’ demographic based on ratings registered by users in a system. To the best of our knowledge, this is the first time that the item ratings are employed for users’ demographic prediction problem, which has extensively been studied in recommendation systems and service personalization. We apply the framework to Movielens dataset’s ratings and predict users’ age and gender. The experimental results show that using all ratings registered by users improves the prediction accuracy by at least 16% compared with previously studied models. Moreover, by classifying the items as popular and unpopular, we eliminate ratings belong to 95% of items and still reach an acceptable level of accuracy. This significantly reduces update cost in a time-varying environment. Besides this classification, we propose other methods to reduce data volume while keeping the predictions accurate.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know