The Ductility Variation of High-Pressure Die-Cast AE44 Alloy: The Role of Inhomogeneous Microstructure
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, ISSN: 1073-5623, Vol: 52, Issue: 6, Page: 2274-2286
2021
- 13Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the study, the through-thickness microstructure and its effects on the ductility and strain heterogeneity in high-pressure die-cast AE44 alloy were investigated. The results show that the studied alloy had a gradient microstructure, where two fine-grained skins sandwiched a core with coarse externally solidified crystals (ESCs) embedded in fine grains. In the core, where porosity concentrated, the ultra-coarse ESCs with sizes up to 600 μm were observed. A great amount of AlRE phase, as the predominant intermetallic phase, was distributed in homogeneously through the thickness. High-resolution digital image correlation (DIC) measurement coupled with electron backscatter diffraction (EBSD) was employed to reveal the deformation inhomogeneity and its root cause. It was found that considerable strain localization mainly appeared in the ultra-coarse ESCs with soft orientation for basal slip and the regions where porosity appeared. Unlike the yield strengths and ultimate tensile strengths, the elongations showed a significant variation. Not only defects but also the ultra-coarse ESCs were the primary factors responsible for the variation in ductility.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know