Detection of Ethanol Concentration in Liquid Using a Double-Layered Resonator Operating at 5G-mm-Wave Frequencies
Journal of Electronic Materials, ISSN: 1543-186X, Vol: 51, Issue: 12, Page: 7028-7036
2022
- 2Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A new sensing technique for rapidly detecting ethanol concentration in aqueous solutions based on electromagnetic resonance is discussed. The sensor has two substrate layers and operates at 5G-mm-wave frequencies. An experimental study of the new resonator's configuration determines the sensor's sensitivity. During the measurements, 6 samples were modeled with varying amounts of ethanol concentration in the water. The results showed that S resonance moves linearly towards higher frequencies as the ethanol content increases. The resonant frequency shifted at 0.178 GHz per 10% increase in ethanol towards higher frequencies. As a result, the proposed 5G-mm-wave-sensing technique based on a replaceable sensing layer was proved to be suitable for rapid, accurate, and low-cost alcohol content detection in liquids.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know