PlumX Metrics
Embed PlumX Metrics

Early-stopped learning for action prediction in videos

International Journal of Multimedia Information Retrieval, ISSN: 2192-662X, Vol: 10, Issue: 4, Page: 219-226
2021
  • 2
    Citations
  • 0
    Usage
  • 8
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Action prediction, also called early action recognition, is about recognizing an action in a video with partial observation. Various methods have been developed to tackle either offline or early action recognition, including deep learning approaches. In a family of deep learning methods, video frames or optical flow images are processed sequentially by the network. In this paper, we present a learning framework that can be applied to such methods to make them more appropriate for early recognition. We propose encouraging the learner to learn from earlier parts of the video and stop learning from some point on. By focusing on the earlier parts, we can expect the model to take full advantage of the information lying in these early parts. To this end, it is necessary to find a stopping point up to which enough information has been observed. We measure the amount of information with the help of the loss function. We applied our framework to Temporal Segment Networks and experimented on UCF11 and HMDB51 datasets. The results show that our method improves on Temporal Segment Networks and outperforms other baseline methods.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know