Exploring the diverse potentials of Planococcus sp. TRC1 for the deconstruction of recalcitrant kraft lignin
International Journal of Environmental Science and Technology, ISSN: 1735-2630, Vol: 14, Issue: 8, Page: 1713-1728
2017
- 11Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Kraft lignin (KL) is the chief contaminant which is responsible for dark coloration, toxicity and high chemical oxygen demand (COD) of paper pulp mill effluent. The present study investigated the diverse potentials of Planococcus sp. TRC1 in the biodegradation of KL. Preliminary evaluation indicated that the strain was able to grow on broad spectrum of lignin-derived compounds, decolorize lignin-mimicking dyes and catabolize substrates of ligninolytic enzymes. Response surface methodology (RSM) was executed to perform the optimization of different process parameters. The results displayed that Planococcus sp. TRC1 could completely utilize 100 mg L of KL and 78% of 200 mg L of KL as sole source of carbon with concurrent reduction in COD and color. The biokinetic details of KL biodegradation showed that the values of μ, µ, q and q were 0.018 h, 0.01 h, 0.023 g g h and 0.05 g g h, respectively. UV–visible spectrophotometry, SEM and FTIR indicated the significant alterations in the surface morphology, functional groups and chromophores during the course of biodegradation. XRD revealed the emergence of peak signifying the formation of low molecular weight intermediates after bacterial treatment. Considering the environmental impact, bacterial-treated KL illustrated less phytotoxicity using Vigna radiata seed bioassay. These results suggested that Planococcus sp. TRC1 could be a promising strain for the degradation of KL in an ecofriendly way.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know