Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone
Carbohydrate Polymers, ISSN: 0144-8617, Vol: 76, Issue: 2, Page: 167-182
2009
- 993Citations
- 732Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Characterization and thermal properties of chitosan films prepared with different acid solvents/Caracterizacion y propiedades termicas de peliculas de quitosana preparadas con diferentes disolventes acidos.(Articulo original)
Introduction Chitosan is a cationic polysaccharide composed of [beta]-(1-4)-D-glucosamine and [beta]-(1-4)-N-acetyl-D-glucosamine. It is generally obtained by alkaline deacetylation of chitin, a natural polysaccharide composed of
Review Description
This review provides a balanced integration of the most recent chemical, biochemical and medical information on the unique characteristics of chitins and chitosans in the area of animal/human tissue regeneration. Hemostasis is immediately obtained after application of most of the commercial chitin-based dressings to traumatic and surgical wounds: platelets are activated by chitin with redundant effects and superior performances compared with known hemostatic materials. To promote angiogenesis, necessary to support physiologically ordered tissue formation, the production of the vascular endothelial growth factor is strongly up-regulated in wound healing when macrophages are activated by chitin/chitosan. The inhibition of activation and expression of matrix metalloproteinases in primary human dermal fibroblasts by low MW chitosans prevents or solves problems caused by metalloproteinase-2 such as the hydrolysis of the basement membrane collagen IV. Experimental biocompatible wound dressings derived from chitin are today available in the form of hydrogels, xerogels, powders, composites, films and scaffolds: the latter are easily colonized by human cells in view of the restoration of tissue defects, with the advantage of avoiding retractive scar formation. The growth of nerve tissue has been guided with chitin tubes covalently coated with oligopeptides derived from laminin. The regeneration of cartilage is also feasible because chitosan maintains the correct morphology of chondrocytes and preserves their capacity to synthesize cell-specific extracellular matrix: chitosan scaffolds incorporating growth factors and morphogenetic proteins have been developed. Impressive advances have been made with osteogenic chitosan composites in treating bone defects, particularly with osteoblasts from mesenchymal stem cells in porous hydroxyapatite-chitin matrices. The introduction of azido functions in chitosan has provided photo-sensitive hydrogels that crosslink in a matter of seconds, thus paving the way to cytocompatible hydrogels for surgical use as coatings, scaffolds, drug carriers and implants capable to deliver cells and growth factors. The peculiar biochemical properties of chitins and chitosans remain unmatched by other polysaccharides.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0144861708005183; http://dx.doi.org/10.1016/j.carbpol.2008.11.002; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=59249098389&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0144861708005183; https://dx.doi.org/10.1016/j.carbpol.2008.11.002
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know