PlumX Metrics
Embed PlumX Metrics

3D-printed monolithic porous adsorbents from a solution-processible, hypercrosslinkable, functionalizable polymer

Chemical Engineering Journal, ISSN: 1385-8947, Vol: 427, Page: 130883
2022
  • 27
    Citations
  • 0
    Usage
  • 30
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    27
    • Citation Indexes
      27
  • Captures
    30

Article Description

Solid adsorbents have been actively developed for energy-efficient gas separations including carbon capture and air purification. However, conventional particulate adsorbents often show ineffective mass transfer and significant pressure drop in practical operations, leading to a limited overall performance. As a potential solution to these issues, the development of three-dimensionally (3D) structured adsorbents has been proposed. Herein, we report a novel approach to design 3D monolithic adsorbents for CO 2 separation via 3D printing of a processible polymer, which in turn can be transformed into a functional porous material via hypercrosslinking and amine-grafting. Importantly, such structure can be realized without an aid from binders or mechanical supports. Our adsorbents demonstrated a promising CO 2 adsorption performance without experiencing any pressure drop under dynamic flow condition. The stability and regenerability, which are also important requirements for practical operations, were also successfully demonstrated through a repetitive adsorption–desorption cycling test in the presence of water vapor. We envisage that our approach can be applied in the development of structurally versatile adsorbents for various gas separation processes.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know