Wide temperature cycling of Li-metal batteries with hydrofluoroether dilution of high-concentration electrolyte
Chemical Engineering Journal, ISSN: 1385-8947, Vol: 427, Page: 131889
2022
- 35Citations
- 31Captures
- 4Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Study: diluting high concentration electrolytes can improve cycling of Li-metal batteries over a wide range of temperatures
Researchers from DGIST (Gyeongbuk Institute of Science and Technology, Republic of Korea) have demonstrated lithium metal battery cycling over a wide range of temperatures (2-60°C)
Article Description
The safe, stable cycling of Li-metal batteries (LMBs) over wide temperature ranges is crucial for practical applications, even in extreme environments. Although LMB performance has been enhanced using various high-concentration electrolytes (HCEs) with hydrofluoroether dilution, efficient operation over a wide temperature range remains elusive. This study elucidated the factors that enable LMB cycling in a wide temperature range (5–60 °C) by exploiting a model HCE composed of lithium bis(fluorosulfonyl)imide and 1,2-dimethoxyethane as well as an HCE diluted with 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE). Comprehensive analyses revealed that TTE dilution plays an essential role at lower temperatures by enhancing Li + ion transport in the concentrated electrolyte while maintaining the original solvation structure. Furthermore, as the performance-determining factor for high-temperature cycling, TTE involvement in the solid–electrolyte interphase (SEI) reinforced the thermal stability. Thus, TTE dilution is crucial for both facile mass transport and thermally stable SEI formation. The resulting Li dendrite suppression and high Li Coulombic efficiency enable the realization of LMBs with a wide operating temperature range.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1385894721034690; http://dx.doi.org/10.1016/j.cej.2021.131889; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113594774&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1385894721034690; https://dx.doi.org/10.1016/j.cej.2021.131889
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know