Robust scheduling of remanufacturing processes for the repair of turbine blades
CIRP Annals, ISSN: 0007-8506, Vol: 72, Issue: 1, Page: 425-428
2023
- 1Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Remanufacturing processes are characterised by uncertainty due to the unpredictable status of used parts, entailing variable processing times and the need for reworks. Robust scheduling approaches are required to plan remanufacturing activities while guaranteeing the efficient use of resources and respect for delivery times. This work proposes a novel scheduling framework to handle uncertain processing times and rework matching the requirements of remanufacturing processes for turbine blades. The approach integrates branch-and-bound and heuristic steps, leveraging a Markovian model and phase-type distributions for the execution of activities and pursuing robustness through the minimisation of the value-at-risk of the makespan. An application to an industrial case is also reported to demonstrate the viability of the approach.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S000785062300032X; http://dx.doi.org/10.1016/j.cirp.2023.03.033; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161296729&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S000785062300032X; https://dx.doi.org/10.1016/j.cirp.2023.03.033
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know