A simple model for the post-breakage response of laminated glass under in-plane loading
Composite Structures, ISSN: 0263-8223, Vol: 230, Page: 111426
2019
- 16Citations
- 30Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Laminated glass, composed by glass plies bonded by polymeric interlayers, is used for structural purposes thanks to its safe post-glass-breakage response. When glass breaks, the shards remain attached to the interlayer, imparting to the damaged element a residual load-bearing capacity, influenced by the tension stiffening of the polymer through the adhesion with the glass shards and, hence, by the degree of delamination. The progression of delamination under cyclic loading has been studied numerically, by assuming a non-linear stress vs. separation law for the glass/interlayer interface. Using a micro-macro approach and homogenization techniques, energy theorems in linear elasticity provide a simple formula that furnishes a lower bound for the effective stiffness of heat-treated panels under in-plane loading, in particular under shear. Numerical experiments have been performed by considering glass shards with different sizes (varying from 20 mm to 100 mm) and shapes (square, rhombic and irregular quadrilateral), with amount of delamination ranging between 30% and 90%, with different shapes of the bonded zone (circular, square and rhombic with rounded corners). The results show that the proposed formula provides a good approximation of the effective stiffness, always on the safe side, with mean error of 6%. This study is of importance in view of the development of innovative glass-based bracings for the strengthening of buildings especially with respect to seismic events.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0263822319303897; http://dx.doi.org/10.1016/j.compstruct.2019.111426; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85068912471&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0263822319303897; https://dx.doi.org/10.1016/j.compstruct.2019.111426
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know