Effect of polynomial, radial basis, and Pearson VII function kernels in support vector machine algorithm for classification of crayfish
Ecological Informatics, ISSN: 1574-9541, Vol: 72, Page: 101911
2022
- 15Citations
- 26Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
New Findings from Gazi University Update Understanding of Support Vector Machines (Effect of Polynomial, Radial Basis, and Pearson Vii Function Kernels In Support Vector Machine Algorithm for Classification of Crayfish)
2023 MAR 08 (NewsRx) -- By a News Reporter-Staff News Editor at Robotics & Machine Learning Daily News -- A new study on Support Vector
Article Description
Freshwater crayfish are one of the most important aquatic organisms that play a pivotal role in the aquatic food chain as well as serving as bioindicators for the aquatic ecosystem health assessment. Hemocytes, the blood cells of crustaceans, can be considered stress and health indicators in crayfish, and are used to evaluate the health response. Therefore, total hemocyte cell numbers (THCs) are useful parameters to show the health of crustaceans and serve as stress indicators to decide the quality of the habitat. Since, catching the fish and the other aquatic organisms, and collecting the data for further assessments are time-consuming and frustrating, today, scientists tend to use swift, more sophisticated, and more reliable methods for modeling the ecosystem stressors based on bioindicators. One tool which has attracted the attention of science communities in the last decades is machine learning algorithms that are reliable and accurate methods to solve classification and regression problems. In this study, a support vector machine is carried out as a machine learning algorithm to classify healthy and unhealthy crayfish based on physiological characteristics. To solve the non-linearity problem of the data by transporting data to high-dimensional space, different kernel functions including polynomial (PK), Pearson VII function-based universal (PUK), and radial basis function (RBF) kernels are used and their effect on the performance of the SVM model was evaluated. Both PK and PUK functions performed well in classifying the crayfish. RBF, however, had an adverse impact on the performance of the model. PUK kernel exhibited an outstanding performance (Accuracy = 100%) for the classification of the healthy and unhealthy crayfish.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1574954122003612; http://dx.doi.org/10.1016/j.ecoinf.2022.101911; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85142163245&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1574954122003612; https://dx.doi.org/10.1016/j.ecoinf.2022.101911
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know