Models and algorithms for the Traveling Salesman Problem with Time-dependent Service times
European Journal of Operational Research, ISSN: 0377-2217, Vol: 283, Issue: 3, Page: 825-843
2020
- 19Citations
- 38Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Traveling Salesman Problem with Time-dependent Service times (TSP-TS) is a generalization of the Asymmetric TSP, in which the service time at each customer is given by a (linear or quadratic) function of the corresponding start time of service. TSP-TS calls for determining a Hamiltonian tour (i.e. a tour visiting each customer exactly once) that minimizes the total tour duration, given by the sum of travel and service times. We propose a new Mixed Integer Programming model for TSP-TS, that is enhanced by lower and upper bounds that improve previous bounds from the literature, and by incorporating exponentially many subtour elimination constraints, that are separated in a dynamic way. In addition, we develop a multi-operator genetic algorithm and two Branch-and-Cut methods, based on the proposed model. The algorithms are tested on benchmark symmetric instances from the literature, and compared with an existing approach. The computational results show that the proposed exact methods are able to prove the optimality of the solutions found for a larger set of instances in shorter computing times. We also tested the Branch-and-Cut algorithms on larger size symmetric instances with up to 58 nodes and on asymmetric instances with up to 45 nodes, demonstrating the effectiveness of the proposed algorithms. In addition, we tested the genetic algorithm on symmetric and asymmetric instances with up to 200 nodes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0377221719309580; http://dx.doi.org/10.1016/j.ejor.2019.11.046; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85076581161&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0377221719309580; https://dx.doi.org/10.1016/j.ejor.2019.11.046
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know