Optimal sizing of fuel cell hybrid electric Heavy-Duty tractor with minimum of unit mileage cost
Energy Conversion and Management, ISSN: 0196-8904, Vol: 330, Page: 119674
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper proposes an optimal hybrid energy sources sizing methodology for fuel cell hybrid heavy-duty tractors (FCHHT) comprising fuel cell system (FCS) with battery (B) and supercapacitor (SC) as hybrid energy storage system (HESS). For this purpose, an objective function of unit mileage (10 4 km) cost (UMC) is put forward to evaluate the system’s initial cost, degradation cost, and hydrogen consumption cost. Furthermore, an average power and state of charge (APS) based Energy Management System (EMS) is proposed, where power-split strategy of FCS and HESS is given, and the output power of FCS is smoothed by the average power of drive cycle power demand, the power of maximum efficiency point and maximum power of FCS, and SOC of HESS. Finally, to solve the hybrid energy source optimization problem, the cancer cell competition and metastasis algorithm (C3MA) is proposed, where an efficient population position updating strategy is used to simulate the competition and metastasis of cancer cells, and the search space can be explored more effectively. C3MA is evaluated using six benchmark functions, demonstrating its robustness and rapid convergence in high-dimensional problems. The size optimization of a 49-ton tractor was conducted. The optimum can always be achieved using APS EMS in conjunction with C3MA, Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO). In comparison to discrete wavelet transform (DWT) EMS, APS demonstrated a 16 % reduction in UMC and a 77 % increase in lifespan. Compared to FCS + B configuration, FCS + B + SC reduces UMC by an average of 19 %.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know