Impact of different numerical approaches on the magnetocaloric effect modeling
Heliyon, ISSN: 2405-8440, Vol: 10, Issue: 11, Page: e31826
2024
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
As an ecological alternative to the conventional refrigeration technology, magnetocaloric refrigeration is still facing scientific and technological challenges hindering their application. Magnetocaloric devices rely on the magnetocaloric effect, where temperature variations result from magnetic field changes. The correct implementation of the magnetocaloric effect in numerical models is crucial before prototyping the related solutions. Here, we present a comparison between the three most used numerical methods to simulate the magnetocaloric effect: continuous temperature change, discrete temperature change step and heat source obtained from adiabatic temperature. By varying the time and space steps, it was observed that the continuous temperature change method is the most appropriate for small time steps, but has the largest computational cost. The discrete method can only be applied to small time steps, but is the fastest method. Finally, the adiabatic temperature change power source method can be applied in the entire range and is the one that presents the best results for larger time steps.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2405844024078575; http://dx.doi.org/10.1016/j.heliyon.2024.e31826; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85194418916&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38882311; https://linkinghub.elsevier.com/retrieve/pii/S2405844024078575; https://dx.doi.org/10.1016/j.heliyon.2024.e31826
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know